0%

INVEST

title

In-Network Volumetric DDoS Victim Identification Using Programmable Commodity Switches

motivation

  • whenever a metric requires to set some global, network-wide threshold, then an accurate estimation of the total traffic volume is of paramount importance
  • 但是会有多个交换机重复记录同一数据包
  • most assume that each packet is counted by a single programmable switch on its path through the network,
  • one could mark counted packets, but such a solution is inherently insecure since an attacker could pre-mark its packets, avoiding detection

Goal

given

image-20220104162944993

return

  • Distinct flow numbers $\hat{n}_{tot}$

  • Average flow size $\hat{R}_{tot}$

  • Total packets number$|\hat{S}_{tot}|$(最终goal)

algorithm

在这项工作中利用的 HLL 的联合属性确保多个 HLL 寄存器,例如 Mm 和 Mn,可以合并到一个寄存器中 Mmn = Mm$\bigcup$Mn 来统计独立更新了 Mm 和 Mn 的数据包流的流基数,即$\hat{n}Mm\bigcup M{n}$,避免重复计算

  1. Distinct flow numbers

    $\hat{n_i}$是单个交换机$M_i$查询HLL得到的不同流数量的估计

    image-20220104162619153

    将q个交换机中top-k交换机的hyperloglog求并集,估计得到总共有多少个不同流。

image-20220104162631159

根据下式,topk交换机就可以估算所有交换机的distinct flow counts。

  1. Average flow size

​ $\hat{Ri}$是(交换机i在$T{int}$时候的packet num/单个交换机$M_i$查询HLL得到的不同流数量的估计),得到交换机i average packet num

image-20220104162703178

​ 求q个交换机中top-k的交换机中估计得到的$\hat{n_i}$ 的平均值

image-20220104162717784

  1. Total packets number

image-20220104162748911

evaluation

  • sensitive to many…
  • 在敏感度分析中用上了他之前的deployment的工作,也提到了apaptive threshold

💡

  • sensitive to flow key types, time interval width, network topology, …不鲁棒,受太多因素的影响了
  • 提醒了我再deployment那个工作中需要注意长尾分布和全是大流的情况下,对总体流量的估计是不准确的,会低估